Gravitational Waves and Dynamics of Coalescing Binary Systems

Thibault Damour

Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette, France)

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

Gravitational Waves in General Relativity (Einstein 1916,1918)

Über Gravitationswellen.

Von A. Einstein.
(Vorgelegt an 31. Januar 1918 (s. oben S. 79).)

Die wichtige Frage, wie die Ausbreitung der Gravitationsfelder er folgt, ist schon vor anderthalb Jahren in einer Akademiearbeit von unir behandelt worden ${ }^{1}$. Da aber meine damalige Darstellung des Gegen standes nicht genügend durehsichtig und außerdem durch einen be dauerlichen Rechenfehter verunstaltet ist, muß ich hier nochmals auf die Angelegenheit zuridekkommen.

Wie damals beschrinke ich mich auch hier auf den Fall, dabi das betrachtete zeitrihmliche Kontinuum sich von einem *gali' (eis fhem. nur sehr wenig unterscheidet. Um für alle Indizes

$$
y_{\omega+}=-\delta_{\mu+}+\gamma_{\omega}
$$

setzen zu können, wảhlen wir, wie es in der speziellen Relativitltstheorie ablich ist, die Zeitvariable x_{4} rein imaginAr, indem wir

$$
x_{4}=i t
$$

setzen, wobei t die \times Lichtzeits bedeutet. In (1) ist $\delta_{w n}=1$ bzw. $\delta_{k}=0$ je nachdem $\mu=v$ oder $\mu \neq v$ ist. Die γ_{μ}, sind gegen i kleine Grōben welche die Abweichung des Kontinuums vom feldfreien darstellen sie bilden cinen Tensor vom zweiten Range gegenüber Lonkstz-Transformationen.
\& 1. Lösung der Nāherungsgleichungen des Gravitations feldes durch retardierte Potentiale.
Wir gehen aus von den für ein beliebiges Koordinatensystem guiltigen ${ }^{2}$ Feldgleichungen

$$
\begin{gathered}
-\sum_{n} \frac{\partial}{\partial x_{\alpha}}\left\{\begin{array}{c}
\mu \nu \\
\alpha
\end{array}\right\}+\sum_{\alpha} \frac{\partial}{\partial x_{\sim}}\left\{\begin{array}{c}
\mu \alpha \\
\alpha
\end{array}\right\}+\sum_{\alpha B}^{\sum}\left\{\begin{array}{c}
\mu \alpha \\
\beta
\end{array}\right\}\left\{\begin{array}{c}
\alpha \beta \\
\alpha
\end{array}\right\}-\sum_{\alpha \beta}^{\sum}\left\{\begin{array}{c}
\mu \nu \\
\alpha
\end{array}\right\}\left\{\begin{array}{c}
\alpha \beta \\
\beta
\end{array}\right\} \\
=-\infty\left(T_{\alpha,}-\frac{1}{2} g_{\alpha} T\right)
\end{gathered}
$$

Diese Sitzungbber- 1916, S. 688 ff abei Abstand genommen.

$$
g_{i j}=\delta_{i j}+h_{i j}
$$

h_{ij} : transverse, traceless and propagates at $\mathrm{v}=\mathrm{c}$

Gravitational Waves: pioneering their detection

Joseph Weber (1919-2000)

General Relativity and Gravitational Waves (Interscience Publishers, NY, 1961)

$$
\frac{\delta L}{L} \approx h_{i j} n^{i} n^{j}
$$

Gravitational Waves: two helicity states $s= \pm 2$

Massless, two helicity states $s= \pm 2$,
i.e. two Transverse-Traceless (TT) tensor polarizations propagating at v=c

$$
h_{i j}=h_{+}\left(x_{i} x_{j}-y_{i} y_{j}\right)+h_{x}\left(x_{i} y_{j}+y_{i} x_{j}\right)
$$

Binary Pulsar Tests I

TD, Experimental Tests of Gravitational Theories, Rev. Part. Phys. 2013 update.

Binary Pulsar Tests II

Binary pulsar data have confirmed with 10^{-3} accuracy:
$>$ The reality of gravitational radiation
>Several strong-field aspects of General Relativity

$$
C_{N S}=\left(\frac{G M}{c^{2} R_{N S}}\right) \approx 0.2 \quad\left(\text { Which is close to } C_{B H}=0.5\right)
$$

General Relativity

LASER INTERFEROMETER GW DETECTORS

LIGO-VIRGO SENSITIVITY CURVES

ADVANCED DETECTORS

Gravitational wave sources : $\quad h_{i j} \simeq \frac{2 G}{c^{4} r} \ddot{Q}_{i j}^{T T}(t-r / c)$

Matched filtering technique

To extract GW signal from detector's output (lost in broad-band noise $\mathrm{S}_{\mathrm{n}}(\mathrm{f})$)

Need to know accurate representations of GW templates

The Problem of Motion in General Relativity

Solve

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

e.g. $\quad T^{\mu \nu}=(e+p) u^{\mu} u^{\nu}+p g^{\mu \nu}$
and extract physical results, e.g.

- Lunar laser ranging

- timing of binary pulsars
- gravitational waves emitted by binary black holes

The Problem of Motion in General Relativity (2)

```
Approximation Methods
- post-Minkowskian (Einstein 1916)
\(g_{\mu \nu}(x)=\eta_{\mu \nu}+h_{\mu \nu}(x), h_{\mu \nu} \ll 1\)
- post-Newtonian (Droste 1916) \(h_{00} \sim h_{i j} \sim \frac{v^{2}}{c^{2}}, h_{0 i} \sim \frac{v^{3}}{c^{3}}, \partial_{0} h \sim \frac{v}{c} \partial_{i} h\)
- Matching of asymptotic expansions body zone / near zone / wave zone
- Numerical Relativity
```

One-chart versus Multi-chart approaches
Coupling between Einstein field equations and equations of motion (Bianchi $\Rightarrow \nabla^{\nu} T_{\mu \nu}=0$)

Strongly self-gravitating bodies : neutron stars or black holes : $h_{\mu \nu}(x) \sim 1$
Skeletonization : $T_{\mu \mathrm{V}} \longrightarrow$ point-masses ? δ-functions in GR
Multipolar Expansion
Need to go to very high orders of approximation
Use a "cocktail": PM, PN, MPM, MAE, EFT, an. reg., dim. reg., ...

Diagrammatic expansion of the interaction Lagrangian

FIG. 4. Diagrammatic expression of the Φ^{i}-linear terms of the total action (3.6), for $i=1,2,3,4$.

The most delicate term to compute would be the contribution due to the kinetic term of the fields in S_{2}, because one must expand up to order σ^{3} the two fields Φ it involves. Fortunately, one can avoid estimating this term by using the Euler identity (3.12) to eliminate it from the Fokker action:

$$
\begin{aligned}
S_{F}[\sigma]= & {\left[\left(S_{0}+S_{1}+S_{2}+\cdots\right)\right.} \\
& \left.-\frac{1}{2}\left(S_{1}+2 S_{2}+3 S_{3}+\cdots\right)\right]_{\Phi=\bar{\Phi}[\sigma]} \\
= & S_{0}+\left[\frac{1}{2} S_{1}-\frac{1}{2} S_{3}-S_{4}\right]_{\Phi=\bar{\Phi}[\sigma]}+O\left(\sigma^{5}\right) .
\end{aligned}
$$

(3.13)

The result of inserting Fig. 5 into Eq. (3.13) is displayed in Fig. 6. [The different diagrams have been drawn so that angles appear only at the vertices involving matter sources.] In the following, we will designate these diagrams by the letter they most naturally evoke, so that the final result for the Fokker action reads

FIG. 5. Equation (3.2a) satisfied by the field $\bar{\Phi}[\sigma]$.

FIG. 6. Diagrammatic expansion of the Fokker action (3.13).

$$
\begin{align*}
S_{F}[\sigma]= & S_{0}[\sigma]+\left(\frac{1}{2} I\right)+\left(\frac{1}{2} V+\frac{1}{3} T\right)+\left(\frac{1}{3} \epsilon+\frac{1}{2} Z+F+\frac{1}{2} H\right. \\
& \left.+\frac{1}{4} X\right)+O\left(\sigma^{5}\right) \tag{3.14}
\end{align*}
$$

where $R_{a b c d}$ is the Riemann curvature of $\gamma_{a b}$. This choice cancels the term of order $\varphi \partial \varphi \partial \varphi$ in $S_{\text {spin } 0}$, i.e., the " T "

FIG. 7. Expression of the diagrams of Fig. 6 when the graviton

Templates for GWs from BBH coalescence

(Brady, Craighton, Thorne 1998)

(Buonanno \& Damour 2000)

Numerical Relativity, the 2005 breakthrough:
Pretorius, Campanelli et al., Baker et al.

Binary black hole coalescence: Numerical Relativity

NUMERICAL RELATIVITY WAVEFORM

Numerical Relativity: >= 2005 (Pretorius, Campanelli et al., Baker et al.)
Very accurate data: Caltech-Cornell spectral code (with some caveats): M. Scheel et al., 2008
Spectral code
Extrapolation (radius \& resolution) Phase error: $<0.02 \mathrm{rad}$ (inspiral) <0.1 ra (ringdown)

Importance of an analytical formalism

$>$ Theoretical: physical understanding of the coalescence process, especially in complicated situations (arbitrary spins)
>Practical: need many thousands of accurate GW templates for detection \& data analysis; need some "analytical" representation of waveform templates as $f\left(m_{1}, m_{2}, \boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)$
>Solution: synergy between analytical \& numerical relativity

non perturbative information

An improved analytical approach

EFFECTIVE ONE BODY (EOB)
 approach to the two-body problem

Buonanno,Damour 99
Buonanno,Damour 00
Damour, Jaranowski,Schäfer 00
Damour 01, Buonanno, Chen, Damour 05,
Damour, Nagar 07, Damour, Iyer, Nagar 08
Buonanno, Cook, Pretorius 07, Buonanno, Pan
Damour, Nagar 10
(2 PN Hamiltonian)
(Rad.Reac. full waveform)
(3 PN Hamiltonian)
(spin)
(factorized waveform)
(comparison to NR)
(tidal effects)

Binary black hole coalescence: Analytical Relativity

Motion of two point masses

$$
S=\int d^{D} x \frac{R(g)}{16 \pi G}-\sum_{A} \int m_{A} \sqrt{-g_{\mu \nu}\left(y_{A}\right) d y_{A}^{\mu} d y_{A}^{\nu}}
$$

Dimensional continuation: $D=4+\varepsilon, \varepsilon \in \mathbb{C}$
Dynamics: up to 3 loops, i.e. 3 PN
Jaranowski, Schäfer 98
Blanchet, Faye 01
Damour, Jaranowski Schäfer 01
Itoh, Futamase 03
Blanchet, Damour, Esposito-Farèse 04

Blanchet, Iyer, Joguet, 02,

Blanchet, Damour, Esposito-Farèse, Iyer 04
Blanchet, Faye, Iyer, Sinha 08

2-body Taylor-expanded 3PN Hamiltonian [JS98, DJS00,01]

$$
\begin{aligned}
& H_{N\left(\mathbf{x}_{a}, \mathbf{P}_{a}\right)}=\sum_{a} \frac{\mathbf{p}_{a}^{2}}{2 m_{a}}-\frac{1}{2} \sum_{a} \sum_{b \neq a} \frac{G m_{a} m_{b}}{r_{a b}}
\end{aligned}
$$

$$
\begin{aligned}
& H_{2 \mathrm{PN}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right)=\frac{1}{16} \frac{\left(\mathbf{p}_{1}^{2}\right)^{3}}{m_{1}^{5}}+\frac{1}{8} \frac{G m_{1} m_{2}}{r_{12}}\left[5 \frac{\left(\mathbf{p}_{1}^{2}\right)^{2}}{m_{1}^{4}}-\frac{11}{2} \frac{\mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}}{m_{1}^{2} m_{2}^{2}}-\frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}}+5 \frac{\mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}}\right. \\
& \left.-6 \frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1}^{2} m_{2}^{2}}-\frac{3}{2} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}}\right] \\
& +\frac{1}{4} \frac{G^{2} m_{1} m_{2}}{r_{12}^{2}}\left[m_{2}\left(10 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}}+19 \frac{\mathbf{p}_{2}^{2}}{m_{2}^{2}}\right)-\frac{1}{2}\left(m_{1}+m_{2}\right) \frac{27\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)+6\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1} m_{2}}\right] \\
& 2 P N \\
& H_{3 \mathrm{PN}}^{\mathrm{reg}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right)=-\frac{5}{128} \frac{\left(\mathbf{p}_{1}^{2}\right)^{4}}{m_{1}^{7}}+\frac{1}{32} \frac{G m_{1} m_{2}}{r_{12}}\left[-14 \frac{\left(\mathbf{p}_{\mathbf{1}}^{2}\right)^{3}}{m_{1}^{6}}+4 \frac{\left(\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}+4 \mathbf{p}_{\mathbf{1}}^{2} \mathbf{p}_{2}^{2}\right) \mathbf{p}_{1}^{2}}{m_{1}^{4} m_{2}^{2}}+\frac{\left(\mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}-2\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}\right)\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)}{m_{1}^{3} m_{2}^{3}}\right. \\
& -10 \frac{\left(\mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}+\mathbf{p}_{2}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}\right) \mathbf{p}_{1}^{2}}{m_{1}^{4} m_{2}^{2}}+24 \frac{\mathbf{p}_{1}^{2}\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1}^{4} m_{2}^{2}}+2 \frac{\mathbf{p}_{1}^{2}\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{3} m_{2}^{3}} \\
& +\frac{\left(7 \mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}-10\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1}^{3} m_{2}^{3}}+6 \frac{\mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{4} m_{2}^{2}}
\end{aligned}
$$

Taylor-expanded 3PN waveform

Blanchet,Iyer, Joguet 02, Blanchet, Damour, Esposito-Farese, lyer 04, Kidder 07, Blanchet et al. 08

$$
\begin{aligned}
h^{22}= & -8 \sqrt{\frac{\pi}{5}} \frac{G \nu m}{c^{2} R} e^{-2 i \phi} x\left\{1-x\left(\frac{107}{42}-\frac{55}{42} \nu\right)+x^{3 / 2}\left[2 \pi+6 i \ln \left(\frac{x}{x_{0}}\right)\right]-x^{2}\left(\frac{2173}{1512}+\frac{1069}{216} \nu-\frac{2047}{1512} \nu^{2}\right)\right. \\
& -x^{5 / 2}\left[\left(\frac{107}{21}-\frac{34}{21} \nu\right) \pi+24 i \nu+\left(\frac{107 i}{7}-\frac{34 i}{7} \nu\right) \ln \left(\frac{x}{x_{0}}\right)\right] \\
& +x^{3}\left[\frac{27027409}{646800}-\frac{856}{105} \gamma_{E}+\frac{2}{3} \pi^{2}-\frac{1712}{105} \ln 2-\frac{428}{105} \ln x\right. \\
& \left.\left.-18\left[\ln \left(\frac{x}{x_{0}}\right)\right]^{2}-\left(\frac{278185}{33264}-\frac{41}{96} \pi^{2}\right) \nu-\frac{20261}{2772} \nu^{2}+\frac{114635}{99792} \nu^{3}+\frac{428 i}{105} \pi+12 i \pi \ln \left(\frac{x}{x_{0}}\right)\right]+O\left(\epsilon^{7 / 2}\right)\right\},
\end{aligned}
$$

$$
x=(M \Omega)^{2 / 3} \sim v^{2} / c^{2}
$$

$$
\begin{aligned}
M & =m_{1}+m_{2} \\
\nu & =m_{1} m_{2} /\left(m_{1}+m_{2}\right)^{2}
\end{aligned}
$$

Structure of EOB formalism

Real dynamics versus Effective dynamics

Effective metric
$d s_{\mathrm{eff}}^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)$

Two-body/EOB "correspondence": think quantum-mechanically (Wheeler)

an effective particle of mass μ in some effective metric $g_{\mu \nu}{ }^{\text {eff }}(M)$

$$
\mu^{2}+g_{\mathrm{eff}}^{\mu \nu} \frac{\partial S_{\mathrm{eff}}}{\partial x^{\mu}} \frac{\partial S_{\mathrm{eff}}}{\partial x^{\nu}}+\mathcal{O}\left(p^{4}\right)=0
$$

Figure 1: Sketch of the correspondence between the quantized energy levels of the real and effective conservative dynamics. n denotes the 'principal quantum

Sommerfeld "Old
Quantum Mechanics":

$$
\begin{aligned}
& J=\ell \hbar=\frac{1}{2 \pi} \oint p_{\varphi} d \varphi \\
& N=n \hbar=I_{r}+J \\
& I_{r}=\frac{1}{2 \pi} \oint p_{r} d r \\
& \hline
\end{aligned}
$$

The EOB energy map

Simple energy map $\quad \mathcal{E}_{e f f}=\frac{s-m_{1}^{2}-m_{2}^{2}}{2 M} \quad s=E_{\text {real }}^{2}$

$$
H_{\mathrm{EOB}}=M \sqrt{1+2 \nu\left(\hat{H}_{\mathrm{eff}}-1\right)} \quad \begin{aligned}
& M=m_{1}+m_{2} \\
& \nu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)^{2}
\end{aligned}
$$

Explicit form of the EOB effective Hamiltonian

The effective metric $g_{\mu \nu}{ }^{\text {eff }}(M)$ at 3PN

$$
d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

where the coefficients are a v-dependent "deformation" of the Schwarzschild ones:

$$
A_{3 \mathrm{PN}}(R)=1-2 u+2 v u^{3}+a_{4} v u^{4}
$$

$$
a_{4}=\frac{94}{3}-\frac{41}{32} \pi^{2} \simeq 18.6879027
$$

$$
(A(R) B(R))_{3 \mathrm{PN}}=1-6 \mathrm{v} u^{2}+2(3 \mathrm{v}-26) \mathrm{v} u^{3} \quad u=G M /\left(c^{2} r\right)
$$

Simple effective Hamiltonian

$$
\hat{H}_{\mathrm{eff}} \equiv \sqrt{p_{r_{*}}^{2}+A\left(1+\frac{p_{\varphi}^{2}}{r^{2}}+z_{3} \frac{p_{r_{*}}^{4}}{r^{2}}\right)}
$$

$$
p_{r_{*}}=\left(\frac{A}{B}\right)^{1 / 2} p_{r}
$$

2-body Taylor-expanded 3PN Hamiltonian [JS98, DJS00,01]

$$
\begin{aligned}
& H_{\mathrm{N}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right)=\sum_{a} \frac{\mathbf{p}_{a}^{2}}{2 m_{a}}-\frac{1}{2} \sum_{a} \sum_{b \neq a} \frac{G m_{a} m_{b}}{r_{a b}} \\
& H_{1 \mathrm{PN}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right)=-\frac{1}{8} \frac{\left(\mathbf{p}_{1}^{2}\right)^{2}}{m_{1}^{3}}+\frac{1}{8} \frac{G m_{1} m_{2}}{r_{12}}\left[-12 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}}+14 \frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)}{m_{1} m_{2}}+2 \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1} m_{2}}\right]+\frac{1}{4} \frac{G m_{1} m_{2}}{r_{12}} \frac{G\left(m_{1}+m_{2}\right)}{r_{12}}+(1 \longleftrightarrow 2) \\
& H_{2 \mathrm{PN}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right)=\frac{1}{16} \frac{\left(\mathbf{p}_{1}^{2}\right)^{3}}{m_{1}^{5}}+\frac{1}{8} \frac{G m_{1} m_{2}}{r_{12}}\left[5 \frac{\left(\mathbf{p}_{1}^{2}\right)^{2}}{m_{1}^{4}}-\frac{11}{2} \frac{\mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}}{m_{1}^{2} m_{2}^{2}}-\frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}}+5 \frac{\mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}}\right. \\
& \left.-6 \frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1}^{2} m_{2}^{2}}-\frac{3}{2} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}}\right] \\
& +\frac{1}{4} \frac{G^{2} m_{1} m_{2}}{r_{12}^{2}}\left[m_{2}\left(10 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}}+19 \frac{\mathbf{p}_{2}^{2}}{m_{2}^{2}}\right)-\frac{1}{2}\left(m_{1}+m_{2}\right) \frac{27\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)+6\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1} m_{2}}\right] \\
& -\frac{1}{8} \frac{G m_{1} m_{2}}{r_{12}} \frac{G^{2}\left(m_{1}^{2}+5 m_{1} m_{2}+m_{2}^{2}\right)}{r_{12}^{2}}+(1 \longleftrightarrow 2) . \\
& H_{3 P \mathrm{~N}}^{\text {reg }}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right)=-\frac{5}{128} \frac{\left(\mathbf{p}_{1}^{2}\right)^{4}}{m_{1}^{7}}+\frac{1}{32} \frac{G m_{1} m_{2}}{r_{12}}\left[-14 \frac{\left(\mathbf{p}_{1}^{2}\right)^{3}}{m_{1}^{6}}+4 \frac{\left(\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}+4 \mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}\right) \mathbf{p}_{1}^{2}}{m_{1}^{4} m_{2}^{2}}+\frac{\left(\mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}-2\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}\right)\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)}{m_{1}^{3} m_{2}^{3}}\right. \\
& -10 \frac{\left(\mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}+\mathbf{p}_{2}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}\right) \mathbf{p}_{1}^{2}}{m_{1}^{4} m_{2}^{2}}+24 \frac{\mathbf{p}_{1}^{2}\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1}^{4} m_{2}^{2}}+2 \frac{\mathbf{p}_{1}^{2}\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{3} m_{2}^{3}} \\
& +\frac{\left(7 \mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}-10\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1}^{3} m_{2}^{3}}+6 \frac{\mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{4} m_{2}^{2}} \\
& \left.+15 \frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{3} m_{2}^{3}}-18 \frac{\mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{3}}{m_{1}^{3} m_{2}^{3}}+5 \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{3}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{3}}{m_{1}^{3} m_{2}^{3}}\right] \\
& +\frac{G^{2} m_{1} m_{2}}{r_{12}^{2}}\left[\frac{1}{16}\left(m_{1}-27 m_{2}\right) \frac{\left(\mathbf{p}_{1}^{2}\right)^{2}}{m_{1}^{4}}-\frac{115}{16} m_{1} \frac{\mathbf{p}_{1}^{2}\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)}{m_{1}^{3} m_{2}}+\frac{1}{48} m_{2} \frac{25\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}+371 \mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}}{m_{1}^{2} m_{2}^{2}}\right. \\
& +\frac{17}{16} \frac{\mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}}{m_{1}^{3}}-\frac{1}{8} m_{1} \frac{\left(15 \mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)+11\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)}{m_{1}^{3} m_{2}}+\frac{5}{12} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{4}}{m_{1}^{3}} \\
& -\frac{3}{2} m_{1} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{3}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1}^{3} m_{2}}+\frac{125}{12} m_{2} \frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1}^{2} m_{2}^{2}}+\frac{10}{3} m_{2} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}} \\
& \left.-\frac{1}{48}\left(220 m_{1}+193 m_{2}\right) \frac{\mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}}\right]+\frac{G^{3} m_{1} m_{2}}{r_{12}^{3}}\left[-\frac{1}{48}\left(466 m_{1}^{2}+\left(473-\frac{3}{4} \pi^{2}\right) m_{1} m_{2}+150 m_{2}^{2}\right) \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}}\right. \\
& +\frac{1}{16}\left(77\left(m_{1}^{2}+m_{2}^{2}\right)+\left(143-\frac{1}{4} \pi^{2}\right) m_{1} m_{2}\right) \frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)}{m_{1} m_{2}}+\frac{1}{16}\left(61 m_{1}^{2}-\left(43+\frac{3}{4} \pi^{2}\right) m_{1} m_{2}\right) \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}}{m_{1}^{2}} \\
& \left.+\frac{1}{16}\left(21\left(m_{1}^{2}+m_{2}^{2}\right)+\left(119+\frac{3}{4} \pi^{2}\right) m_{1} m_{2}\right) \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1} m_{2}}\right] \\
& +\frac{1}{8} \frac{G^{4} m_{1} m_{2}^{3}}{r_{12}^{4}}\left[\left(\frac{227}{3}-\frac{21}{4} \pi^{2}\right) m_{1}+m_{2}\right]+(1 \longleftrightarrow 2) .
\end{aligned}
$$

Hamilton's equation + radiation reaction

$$
\begin{gathered}
\frac{d r}{d t}=\left(\frac{A}{B}\right)^{1 / 2} \frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial p_{r_{*}}} \\
\frac{d p_{r_{*}}}{d t}=-\left(\frac{A}{B}\right)^{1 / 2} \frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial r} \\
\Omega \equiv \frac{d \varphi}{d t}=\frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial p_{\varphi}} \\
\frac{d p_{\varphi}}{d t}=\hat{\mathcal{F}}_{\varphi}
\end{gathered}
$$

The system must lose mechanical angular momentum
Use PN-expanded result for GW angular momentum flux as a starting point. Needs resummation to have a better behavior during late-inspiral and plunge.

PN calculations are done in the circular approximation

$$
\hat{\mathcal{F}}_{\varphi}^{\text {Taylor }}=-\frac{32}{5} \nu \Omega^{5} r_{\omega}^{4} \hat{F}^{\text {Taylor }}\left(v_{\varphi}\right)
$$

Parameter-dependent
EOB 1.* [DIS 1998, DN07]
Parameter -free:
EOB 2.0 [DIN 2008, ${ }^{3}{ }^{\text {DNO9] }}$

EOB 2.0: new resummation procedures (DN07, DIN 2008)

-Resummation of the waveform multipole by multipole
-Factorized waveform for any (I,m) at the highest available PN order (start from PN results of Blanchet et al.)

remnant modulus correction:
-I-th power of the (expanded) I-th root of f_{lm} -improves the behavior of PN corrections

$$
T_{\ell m}=\frac{\Gamma(\ell+1-2 i \hat{k})}{\Gamma(\ell+1)} e^{\lambda \hat{\hat{\pi}}} e^{2 \hat{\hat{k}} \log \left(2 k r_{0}\right)}
$$

EOB (effective) energy (even-parity)
Angular momentum (odd-parity)
resums an infinite number of leading logarithms in tail effects

Radiation reaction: parameter-free resummation

$$
\mathcal{F}_{\varphi} \equiv-\frac{1}{8 \pi \Omega} \sum_{\ell=2}^{\ell_{\max }} \sum_{m=1}^{\ell}(m \Omega)^{2}\left|R h_{\ell m}^{(\epsilon)}\right|^{2}
$$

$$
\begin{aligned}
& h_{\ell m}=h_{\ell m}^{(N)} \hat{h}_{\ell m}^{(\epsilon)} f_{\ell m}^{\mathrm{NQC}} \\
& \hat{h}_{\ell m}^{(\epsilon)}=\hat{S}_{\mathrm{eff}}^{(\epsilon)} T_{\ell m} e^{\mathrm{i} \delta_{\ell m}} \rho_{\ell m}^{\ell}
\end{aligned}
$$

$$
\begin{aligned}
\rho_{22}(x ; \nu)=1 & +\left(\frac{55 \nu}{84}-\frac{43}{42}\right) x+\left(\frac{19583 \nu^{2}}{42336}-\frac{33025 \nu}{21168}-\frac{20555}{10584}\right) x^{2} \\
& +\left(\frac{10620745 \nu^{3}}{39118464}-\frac{6292061 \nu^{2}}{3259872}+\frac{41 \pi^{2} \nu}{192}-\frac{48993925 \nu}{9779616}-\frac{428}{105} \text { eulerlog }_{2}(x)+\frac{1556919113}{122245200}\right) x^{3} \\
& +\left(\frac{9202}{2205} \text { eulerlog }_{2}(x)-\frac{387216563023}{160190110080}\right) x^{4}+\left(\frac{439877}{55566} \text { eulerlog }_{2}(x)-\frac{16094530514677}{533967033600}\right) x^{5}+\mathcal{O}\left(x^{6}\right),
\end{aligned}
$$

- Different possible representations of the residual amplitude correction [Padé]

Test-mass
Comparing fluxes, circular orbits)

Equal-mass
(Comparing non-resummed \& EOB-resummed amplitudes to Caltech-Cornell BBH data)

Extending EOB beyond current analytical knowledge

Introducing (a5, a6) parametrizing 4-loop and 5-loop effects

$$
A\left(u ; a_{5}, a_{6}, \nu\right) \equiv P_{5}^{1}\left[A^{3 \mathrm{PN}}(u)+\nu a_{5} u^{5}+\nu a_{6} u^{6}\right]
$$

Introducing next-to-quasi-circular corrections to the quadrupolar GW amplitude

$$
f_{22}^{\mathrm{NQC}}\left(a_{1}, a_{2}\right)=1+a_{1} p_{r_{*}}^{2} /(r \Omega)^{2}+a_{2} \ddot{r} / r \Omega^{2}
$$

Use Caltech-Cornell [inspiral-plunge] NR data to constrain $\left(a_{5}, a_{6}\right)$
A wide region of correlated values $\left(a_{5}, a_{6}\right)$ exists where the phase difference can be reduced at the level of the numerical error (<0.02 radians) during the inspiral

EOB-NR: NONSPINNING BINARIES

Need calibration of high-order PN effects with NR data: $q=1,2 \& 4$ TD\&AN, et al. (2009)

$$
A\left(u, a_{5}, a_{6} ; \nu\right)=P_{5}^{1}\left[A^{3 \mathrm{PN}}(u ; \nu)+\nu a_{5} u^{5}+\nu a_{6} u^{6}\right]
$$

EOB-NR: NONSPINNING BINARIES

$$
A\left(u, a_{5}, a_{6} ; \nu\right)=P_{5}^{1}\left[A^{3 P N}(u ; \nu)+\nu a_{5} u^{5}+\nu a_{6} u^{6}\right]
$$

$\mathrm{q}=1,2,3,4$ and 6
(Buonanno, Pan et al. 2011)

RECENT THEORETICAL DEVELOPMENTS: LOGS

Recently computed 4PN and 5PN terms in the A(u) function:
(Damour 2010, Blanchet et al. 2010, Akcay, Barack, Damour \& Sago 2012, Barausse, Buonanno \& Le Tiec 2012, Jaranowski \& Schaefer 2013, Bini\& Damour 2013)

$$
\begin{aligned}
A^{\text {Taylor }}(u) & =1-2 u+2 \nu u^{3}+\left(\frac{94}{3}-\frac{41}{32} \pi^{2}\right) \nu u^{4}+\nu\left[a_{5}^{c}(\nu)+a_{5}^{\ln }(\nu) \ln u\right] u^{5}+\nu\left[a_{6}^{c}(\nu)+a_{6}^{\ln }(\nu) \ln u\right] u^{6} \\
a_{5}^{\ln }(\nu) & =\frac{64}{5} \\
a_{6}^{\ln }(\nu) & =-\frac{7004}{105}-\frac{144}{5} \nu \\
a_{5}^{c}(\nu) & =-\frac{4237}{60}+\frac{2275}{512} \pi^{2}+\frac{256}{5} \ln 2+\frac{128}{5} \gamma+\left(-\frac{221}{6}+\frac{41}{32} \pi^{2}\right) \nu
\end{aligned}
$$

The 5PN nonlogarithmic terms are analytically unknown.
Used as "effective" parameters to be determined / constrained using NR waveform data

The current EOB potential (with logs):

$$
A\left(u ; \nu ; a_{5}^{c}, a_{6}^{c}\right)=P_{5}^{1}\left[A^{\text {Taylor }}(u)\right]
$$

Main EOB radial potential A(u, v)

Equal- mass case : $v=1 / 4 ; u=G M / c^{2} R$ v-deformation of Schwarzschild $A_{s}(u)=1-2 M / R=1-2 u$

$\varrho(x)$ and periastron advance in (comparable-mass)

 Black Hole binaries (Le Tiec et al. 2011)$$
\begin{aligned}
& \mathrm{K}(\mathrm{x})=\Omega_{_} \phi / \Omega_{_} ; \quad \mathrm{x}=\left(\mathrm{M} \Omega_{_} \phi\right)^{\wedge}(2 / 3) \\
& K_{\mathrm{EOB}}=\sqrt{\frac{A_{p}^{\prime}(u)}{D(u) \Delta(u)}}, \\
& K_{\mathrm{GSF}}^{v}=\frac{1}{\sqrt{1-6 x}}\left[1-\frac{v}{2} \frac{\rho(x)}{1-6 x}+\mathscr{\rho}\left(v^{2}\right)\right],
\end{aligned}
$$

where $A_{p}^{\prime}=\mathrm{d} A_{p} / \mathrm{d} u$, and $\Delta=A_{p} A_{p}^{\prime}+2 u\left(A_{p}^{\prime}\right)^{2}-u A_{p} A_{p}^{\prime \prime}$,

FIG. 1: The periastron advance K of an equal mass black hole binary, in the limit of zero eccentricity, as a function of the orbital frequency Ω_{p} of the circular motion. The NR results are indicated by the cyan-shaded region. The PN and EOB results are valid at 3PN order. The lower panel shows the relative difference $\delta K / K \equiv\left(K-K_{\mathrm{NR}}\right) / K_{\mathrm{NR}}$.

FIG. 2: Same as in Fig. 1, but for a mass ratio $q=1 / 8$. Note that for an orbital frequency $m \Omega_{p} \sim 0.03$, corresponding to a separation $r \sim 10 \mathrm{~m}$, the periastron advance reaches half an orbit per radial period.

Since $\rho(x)>0$ for all stable circular orbits, the $\mathscr{O}(q)$ GSF

EOB-NR : SPINNING BINARIES

Theory : Damour 01 Damour Jaranowski Schaefer 07; Barausse Buonanno 10; Nagar 11...
Waveform resummation with spin : Pan et al. (2010)
AR/NR comparison : Pan et al. 09, Taracchini et al. 12, Pan et al. 13

FIG. 6: Same as in Fig. 3 but for $q=1, \chi_{1}=\chi_{2}=+0.43756$.

EOB-NR : PRECESSING SPINNING BINARIES

Pan et al. 13

A catalog of 171 high-quality binary black-hole simulations for gravitational-wave astronomy [arXiv: 1304.6077]

Abdul H. Mroué, ${ }^{1}$ Mark A. Scheel, ${ }^{2}$ Béla Szilágyi, ${ }^{2}$ Harald P. Pfeiffer, ${ }^{1}$ Michael Boyle, ${ }^{3}$ Daniel A. Hemberger, ${ }^{3}$ Lawrence E. Kidder, ${ }^{3}$ Geoffrey Lovelace, ${ }^{4,2}$ Sergei Ossokine, ${ }^{1,5}$ Nicholas W. Taylor, ${ }^{2}$ Anl Zenginoğlu, ${ }^{2}$ Luisa T. Buchman, ${ }^{2}$ Tony Chu, ${ }^{1}$ Evan Foley, ${ }^{4}$ Matthew Giesler, ${ }^{4}$ Robert Owen, ${ }^{6}$ and Saul A. Teukolsky ${ }^{3}$

FIG. 3: Waveforms from all simulations in the catalog. Shown here are h_{+}(blue) and h_{x} (red) in a sky direction parallel to the initial orbital plane of each simulation. All plots have the same horizontal scale, with each tick representing a time interval of 2000 M , where M is the total mass.

Late-inspiral and coalescence of binary neutron stars (BNS)

Inspiralling (and merging) Binary Neutron Star (BNS) systems: important and "secure" targets for GW detectors

Recent progress in BNS and BHNS numerical relativity simulations of merger by several groups [Shibata et al., Baiotti et al., Etienne et al., Duez et al., Bernuzzi et al. 12, Hotokezaka et al. 13] See review of J. Faber, Class. Q. Grav. 26 (2009) 114004 Most sensitive band of GW detectors

Need analytical (NR-completed) modelling of the late-inspiral part of the signal before merger [Flanagan\&Hinderer 08, Hinderer et al 09, Damour\&Nagar 09,10, Binnington\&Poisson 09]
Extract EOS information using late-inspiral (\& plunge) waveforms, which are sensitive to tidal interaction. Signal within the

From Baiotti, Giacomazzo \& Rezzolla, Phys. Rev. D 78, 084033 (2008) (kHz)

Binary neutron stars: Tidal effects in EOB

- tidal extension of EOB formalism : non minimal worldline couplings

$$
\Delta S_{\text {nonminimal }}=\sum_{A} \frac{1}{4} \mu_{2}^{A} \int d s_{A}\left(u^{\mu} u^{\nu} R_{\mu \alpha \nu \beta}\right)^{2}+\ldots
$$

Damour, Esposito-Farèse 96, Goldberger, Rothstein 06, Damour, Nagar 09
modification of EOB effective metric + ... :

$$
\begin{aligned}
A(r) & =A^{0}(r)+A^{\text {tidal }}(r) \\
A^{\text {tidal }}(r) & =-\kappa_{2} u^{6}\left(1+\bar{\alpha}_{1} u+\bar{\alpha}_{2} u^{2}+\ldots\right)+\ldots
\end{aligned}
$$

plus tidal modifications of GW waveform \& radiation reaction
\Rightarrow Need analytical theory for computing $\quad \boldsymbol{\mu}_{2}, \boldsymbol{K}_{2}$ as well as $\overline{\boldsymbol{\alpha}}_{1}, \ldots$ [Flanagan\&Hinderer 08, Hinderer et al 09, Damour\&Nagar 09,10, Binnington\&Poisson 09,
Damour\&Esposito-Farèse10]
$>$ Tidal polarizability parameters are measurable in late signals of Advanced-Ligo
[Damour, Nagar and Villain 12, Del Pozzo et al. 13]

Conclusions

$>$ Experimentally, gravitational wave astronomy is about to start. The ground-based network of detectors (LIGO/Virgo/GEO/...) is being updated (ten-fold gain in sensitivity in 2015), and extended (KAGRA, LIGO-India).
$>$ Numerical relativity : Recent breakthroughs (based on a "cocktail" of ingredients : new formulations, constraint damping, punctures, ...) allow one to have an accurate knowledge of nonperturbative aspects of the two-body problem (both BBH, BNS and BHNS)
$>$ The Effective One-Body (EOB) method offers a way to upgrade the results of traditional analytical approximation methods (PN and BH perturbation theory) by using new resummation techniques and new ways of combining approximation methods. EOB allows one to analytically describe the FULL coalescence of BBH.
>There exists a complementarity between Numerical Relativity and Analytical Relativity, especially when using the particular resummation of perturbative results defined by the Effective One Body formalism. The NR- tuned EOB formalism is likely to be essential for computing ${ }_{46}$ the many thousands of accurate GW templates needed for LIGO/Virgo/...

